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1 Bootstrap Confidence Intervals and Double Bootstrap

1.1 Recap: Bootstrap methods

Bootstrap is an asymptotic nonparametric method, where we use the empirical distribution
as an asymptotic approximation to the true distribution. Anything we want to do with
the true distribution, we substitute in the empirical distribution and call it a day.

If we have a nonparametric model X1, . . . , Xn
iid∼ P with “parameter” θ(P ) (not neces-

sarily 1 to 1), then we discussed the notion of a plug-in estimator θ̂n(X) = θ(P̂n), where
P̂n is an estimator of P . A typical choice is the empirical distribution P̂n = 1

n

∑n
i=1 δXi .

(Note: There ar eother choices, estpeically for non-i.i.d. sampling models, e.g. time series.)

Remark 1.1. Bootstrap is often conflated with permutation tests. They are both non-
parametric and involve resampling from the data, but they have very different underlying
statistical logic. The permutation test is an exact, finite sample method; if you take enough
permutations, you will get the exact conditional distribution of the test statistic under the
null hypothesis. On the other hand, bootstrap is an approximation which only becomes
accurate asymptotically.

We have seen two bootstrap algorithms so far:

• If θ̂n(X) is any estimator we want, its standard error is

s. e.(θ̂n(X)) =

√
Var

Xi
iid∼P

(θ̂n(X)),

and the bootstrap standard error is

ŝ. e.(θ̂n(X)) =

√
Var

X∗i
iid∼ P̂n

(θ̂n(X∗)).

• If θ̂n(X) is any estimator we want, its bias is

Bias(θ̂n) = E
Xi

iid∼P
[θ̂n(X)]− θ(P ),
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and the bootstrap bias estimator is

B̂ias(θ̂n) = E
X∗i

iid∼ P̂n
[θ̂n(X∗)]− θ(P̂n).

We also have the bias corrected bootstrap estimator

θ̂BC
n = θ̂n − B̂ias.

1.2 Bootstrap confidence intervals

Suppose we want a confidence interval for θ(P ). Instead of inverting a hypothesis test, we
can define a random variable Rn(X,P ) = θ̂n(X) − θ(P ) for any estimator θ̂n; if we know
the distribution of Rn, we can construct the confidence interval using a point estimate for
Rn.

Define the CDF
Gn,P (r) = PP (θ̂n(X)− θ(P ) ≤ r).

The lower α/2 quantile is
r1 = G−1n,P (α/2),

and the upper α/2 quantile is
r1 = G−1n,P (1− α/2).

Then

1− α = PP (r1 ≤ θ̂n − θ ≤ r2)

= PP (θ ∈ [θ̂n − r2, θ̂n − r1])

The interval we get only depends on Gn,P .

If we don’t know P , then we can use P̂n instead:

G
n,P̂n

(r) = P
X∗

iid∼ P̂n
(θ̂(X∗)− θ(P̂n) ≤ r).

This depends only on the sample X. Using this CDF in the above calculation gives us the
bootstrap confidence interval

Cn,α(X) = [θ̂n(X)− r̂2, θ̂n(X)− r̂1],

where
r̂1 = G−1

n,P̂n
(α/2), r̂2 = G−1

n,P̂n
(1− α/2).

Here is the procedure in practice:

1. For b = 1, . . . , B, let X∗b1 , . . . , X
∗b
n

iid∼ P̂n.
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2. For b = 1, . . . , B, let R∗bn = θ̂n(X∗b)− θ(P̂n).

3. Return Ĝn(r) = 1
B

∑B
k=1 1{R∗bn ≤r}

4. Invert this to recover r̂1 and r̂2.

This is not the only way to make a bootstrap confidence interval. Other examples of
estimators we could use bootstrap with for confidence intervals are

• The studentized root

Rn(X,P ) =
θ̂n(X)− θ(P )

σ̂(X)
.

• The relative error

Rn(X,P ) =
θ̂n(X)

θ(P )
.

With the studentized root,

Cn,α = [θ̂n − r2σ̂, θ̂n − r1θ̂],

where we can estimate r1, r2 using a the plug-in estimator Rn.

Remark 1.2. Our first version of the bootstrap confidence interval works best when Gn,P
is not so sensitive to varying P .

1.3 Double bootstrap

Bootstrap is an approximation. Is it a good approximation? Suppose we have, for example,
a bootstrap confidence interval

Cn,α = [θ̂n(X)− r̂2(X)σ̂(X), θ̂n(X)− r̂1(X)σ̂(X)].

What is the probability
P
Xi

iid∼P
(θ̂n(P ) ∈ Cn,α(X))?

We can use bootstrap to estimate this:

P
X∗i

iid∼ P̂n
(θ̂n(P̂n) ∈ Cn,α(X∗))?

Suppose we estimate that Cn,0.1 has ≈ 87% coverage, but Cn,0.08 has ≈ 90% coverage. Then
we want the latter confidence interval. In particular, we are using bootstrap to calibrate
the confidence level of the confidence interval.

Remark 1.3. We could do this bootstrap “tuning” of α using any confidence interval, not
just one that was originally obtained through bootstrap.
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Here is how we can implement this α “tuning” in practice:

1. For a = 1, . . . , A, let X∗a1 , . . . , X∗an
iid∼ P̂n.

2. Calculate Cn,α′(X
∗a) for α′ in some grid (try α′ = 10%, 9%, 8%, etc.) using whatever

method you are using to obtain a confidence interval (bootstrap or not).

We can specify this in particular for the double bootstrap:

(a) Let P̂ ∗an = 1
n

∑n
i=1 δX∗i .

(b) For b = 1, . . . , B,

i. Let X∗∗a,b1 , . . . , X∗∗a,bn
iid∼ P̂ ∗an .

ii. Let

R∗∗a,bn =
θ̂n(X∗∗a,b)− θ(P̂ ∗an )

σ̂(X∗∗a,b)
.

(c) Let G∗an = ecdf(R∗∗a,1n , . . . , R∗∗a,Bn ).

(d) For α′ in the grid, let

Cn,α′(X
∗a) = [θ̂∗n − σ̂∗ar̂2(G∗an ), θ̂∗n − σ̂∗ar̂1(G∗an )].

3. For α′ in this grid, let

̂Coverage(α′) =
1

A

A∑
a=1

1{Cn,α′ (X∗a)3θ(P̂n)}
.

4. Take α̂ = max{α′ : ̂Coverage(α′) ≥ 1− α}, and return Cn,α̂(X).

Remark 1.4. This seems like circular logic, where this method will suffer from the same
issues as the original bootstrap confidence interval. The heuristic idea is that the dou-
ble bootstrap confidence interval may be less sensitive to changes in P than the original
confidence interval.
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